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Mu+  
•  Can’t resolve chemical shifts 

so no structural information 
about diamagnetic muonated 
molecules. 

•  Mu+ diffusion in materials. 

Muonium 
•  Mu reaction kinetics in gases 

and liquids (isotope effect) 
 
•  Interaction with environment 
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Muoniated Radicals 
•  Structure 
•  Molecular dynamics 
•  Reaction kinetics 
•  Spin labels 
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TF-µSR 
Precession frequencies 
(requires CW source) 

ALC-µSR 
Resonance fields 

Hyperfine Coupling 
Constants 

Temperature Dependence 
of HFCs 

Muon hfcc (Aµ) 

Distribution of 
unpaired electron 

Nuclear hfccs  
(H, D, 13C, 14N….) 

•  3D structure 
•  Intramolecular motion 

Solid 
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•  Ability to scan over wider field range. Find all resonances. 

of the ALCs and the eSR, this points to a thermally
activated, SOI-based spin relaxation mechanism.

Such an increase of the eSR with the Z of the substituent
atom, the so-called heavy atom effect, is expected for a
SOI-based spin relaxation mechanism. However, we do not
expect a simple relationship between these two quantities,
for the following reasons. First of all, although the atomic
SO coupling constant is predicted to increase as Z2 based
on simplifying assumptions [39], its actual value varies in a
complex way with Z [40]. Second, the effect of the SOI due
to the substituted atom compared to that from all the other
atoms in the molecule depends on the weight of the wave
function at the substituent site, and this is molecule specific
[20]. To overcome these difficulties, and estimate indepen-
dently the strength of the SOI along the series in order to
relate it with the eSR rate, we have measured the exciton
singlet to triplet conversion rate, known as the intersystem
crossing rate (kISC), via time-resolved photoluminescence.
An estimation of kISC has been possible in Alq3, Gaq3,
and Inq3 where singlet and triplet emissions can be both
clearly singled out by time-resolved luminescence measure-
ments (details of these measurements are shown in the
Supplemental Material [25]). This was not possible in Biq3
and in the TES series due to their different optical properties.

The kISC is proportional to the square of the matrix
element of the SOI Hamiltonian between the singlet and
triplet states [41], so kISC can be used as a reliable mea-
surement of the strength of the molecular SOI. This
approach is solidly founded on the widespread understand-
ing of the physics behind the singlet-to-triplet conversion
[41–44], and allows us to bypass the fact that the precise
form of the underlying dependence of the eSR on the
atomic number of the substituents is unknown.

Figure 3(a) shows the eSR as measured through !SR
as a function of kISC, which is proportional to the SOI
strength, in the Xq3 series. It reveals a clear relationship
between the eSR and the strength of the SOI. This depen-
dence suggests the existence of a SOI-driven mechanism
for spin relaxation. We also plot, in Fig. 3(b) the same eSR
data versus the Z of the substituent atom. The expected
increase of the eSR with Z is indeed observed in Fig. 3(b).

In the following, we will show that an alternative inter-
pretation in terms of a HFI-based mechanism does not
provide a consistent explanation of the observed change
of eSR with Z.
Given that the only change we made to the molecule was

the central atom, with the number and location of hydrogen
atoms remaining unaltered, there should not be any direct
effect of the HFI between the electron and hydrogen in the
changes observed here.
An effect of the HFI due to changes to the spin and

nuclear magnetic moment of the central atom is also very
unlikely. Table I shows that the magnitude of the spin and
the nuclear moment of the substituent atoms does not
correlate with the observed increase of the eSR. Instead,
for the case of Alq3 and Gaq3, where the eSR roughly
doubles, both the nuclear moment and spin of Al are
significantly larger than those of Ga. Finally, one might
argue that changing the central atoms may still bear an
indirect effect on the HFI that could influence the observed
results. Changing the mass of an atom in the molecule can
imply a change in the bond lengths and angles or, more
generally, a modification of the energy and population of
vibrational modes. Both of these effects could result in a
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FIG. 3 (color online). (a) Electron spin relaxation rate as a
function of the intersystem crossing rate in the Xq3 series at
300 K. The electron spin relaxation rate shows a dependence on
the intersystem crossing rate, which is used here as a measure-
ment of the strength of the spin-orbit interaction. (b) eSR for the
Xq3 and TES series as a function of the atomic number of the
substituent atom, Z.
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FIG. 2 (color online). Muon spin polarization around the ALCs in (a) Alq3, (b) Gaq3, (c) Inq3, and (d) Biq3 at 10 K (blue triangles)
and 300 K (red circles). Modelling for these ALCs is indicated by the black lines and is used to determine the electron spin relaxation
rate, which is essentially proportional to the amplitude of the ALC curves (see text).
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of the ALCs and the eSR, this points to a thermally
activated, SOI-based spin relaxation mechanism.

Such an increase of the eSR with the Z of the substituent
atom, the so-called heavy atom effect, is expected for a
SOI-based spin relaxation mechanism. However, we do not
expect a simple relationship between these two quantities,
for the following reasons. First of all, although the atomic
SO coupling constant is predicted to increase as Z2 based
on simplifying assumptions [39], its actual value varies in a
complex way with Z [40]. Second, the effect of the SOI due
to the substituted atom compared to that from all the other
atoms in the molecule depends on the weight of the wave
function at the substituent site, and this is molecule specific
[20]. To overcome these difficulties, and estimate indepen-
dently the strength of the SOI along the series in order to
relate it with the eSR rate, we have measured the exciton
singlet to triplet conversion rate, known as the intersystem
crossing rate (kISC), via time-resolved photoluminescence.
An estimation of kISC has been possible in Alq3, Gaq3,
and Inq3 where singlet and triplet emissions can be both
clearly singled out by time-resolved luminescence measure-
ments (details of these measurements are shown in the
Supplemental Material [25]). This was not possible in Biq3
and in the TES series due to their different optical properties.

The kISC is proportional to the square of the matrix
element of the SOI Hamiltonian between the singlet and
triplet states [41], so kISC can be used as a reliable mea-
surement of the strength of the molecular SOI. This
approach is solidly founded on the widespread understand-
ing of the physics behind the singlet-to-triplet conversion
[41–44], and allows us to bypass the fact that the precise
form of the underlying dependence of the eSR on the
atomic number of the substituents is unknown.

Figure 3(a) shows the eSR as measured through !SR
as a function of kISC, which is proportional to the SOI
strength, in the Xq3 series. It reveals a clear relationship
between the eSR and the strength of the SOI. This depen-
dence suggests the existence of a SOI-driven mechanism
for spin relaxation. We also plot, in Fig. 3(b) the same eSR
data versus the Z of the substituent atom. The expected
increase of the eSR with Z is indeed observed in Fig. 3(b).

In the following, we will show that an alternative inter-
pretation in terms of a HFI-based mechanism does not
provide a consistent explanation of the observed change
of eSR with Z.
Given that the only change we made to the molecule was

the central atom, with the number and location of hydrogen
atoms remaining unaltered, there should not be any direct
effect of the HFI between the electron and hydrogen in the
changes observed here.
An effect of the HFI due to changes to the spin and

nuclear magnetic moment of the central atom is also very
unlikely. Table I shows that the magnitude of the spin and
the nuclear moment of the substituent atoms does not
correlate with the observed increase of the eSR. Instead,
for the case of Alq3 and Gaq3, where the eSR roughly
doubles, both the nuclear moment and spin of Al are
significantly larger than those of Ga. Finally, one might
argue that changing the central atoms may still bear an
indirect effect on the HFI that could influence the observed
results. Changing the mass of an atom in the molecule can
imply a change in the bond lengths and angles or, more
generally, a modification of the energy and population of
vibrational modes. Both of these effects could result in a
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300 K. The electron spin relaxation rate shows a dependence on
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ment of the strength of the spin-orbit interaction. (b) eSR for the
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Alq3 

•  Measure more samples, temperatures, field points, etc. 
•  Stability of beam over day. Can distort long ALC sweeps. 

Nuccio et al.  
PRL 2013, 110, 216602 
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Muonium Addition: DFT Study�
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•  Introduce spin label in 
soft matter system 
(liquid crystal, polymer) 

•  Similar to spin labeling 
with stable nitroxides 
except smaller 
perturbation. 

•  Radical sensitive to: 
•  Orientation of probe 
•  Polarity of local 

environment 
•  Fluctuations on the ns 

to µs timescale 
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McKenzie et al. JPCB 2011, 115, 9360  

P/2 

Aµ = 441.9 MHz 
Bres(Δ1) = 1.62 T 

UB3LYP/6-31G(d,p)//
UPBE0/EPR-II 

Aµ = 71.7 MHz 
Bres(Δ1) = 0.26 T 
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•  Formation of 1D “molecular 
wires” in Colh and H phases. 

•  λe ~ 100’s of µs-1 in Colh and 
H phases of HHTT. 
Mechanism unknown.  

McKenzie et al. PRE 2013, 87, 012504 
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Load 

Electrons Current 

Anode Cathode 
Separator 

Solid Polymer Electrolyte 

Polyethylene oxide (PEO) or 
(CH2-CH2-O)n is used as 
electrolyte in lithium-ion 

batteries.  

Understanding microscopic 
dynamics of Li+ in polymer 

electrolyte essential to 
optimize materials.  

Li+ 
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(>3 nm) dynamics. Above q! 0:2 !A"1, the scattering
intensities are dominated by the incoherent background
from the protonated monomers. Therefore, the self-
correlation functions of monomers are measured by NSE,
in other words, segmental motions of monomers. In this
high-q region, !R of pure PEO is consistent with the
previously reported values by Brodeck et al. [20] using
incoherent intermediate scattering techniques, which cover
higher q values (0:2 !A"1 # q # 2:0 !A"1).

While, in NSE, the observed relaxation features arise
from mixtures of local segmental motions and chain
normal modes, the segmental relaxation behavior was
independently investigated using dielectric measurements.
Dielectric measurements directly couple to both the dipo-
lar degrees of freedom and the Li-ion transport in PEO,
whose dynamics can be investigated in a wide frequency
and temperature range. For the present work, we have
studied the sample with a PEO:LiTFSI ratio of 10:1 at
frequencies from 1 Hz to 1 GHz and at temperatures from
150 to 350 K [19]. Figure 2 shows the " and # relaxation
times obtained from the fits to the measured dielectric
constant and conductivity data, significantly extending
the temperature range of the relaxation time data reported
in Ref. [17]. In addition, the dc resistivity $dc, deduced
from the dielectric measurements, is shown (crosses).
It reasonably agrees with the results of the independently
measured dc conductivity [19]. In literature, often a close
correlation of segmental motion and ionic charge transport
is assumed [3,17,23]. Thus, the $dcðTÞ plot (right scale of
Fig. 2) was scaled to achieve the same number of decades
per cm as for the !ðTÞ plots (left scale) and vertically
shifted to match the !"ðTÞ curve. Obviously, $dcðTÞ and
!"ðTÞ exhibit nearly identical temperature dependence.
The solid line in Fig. 2 represents a fit of !"ðTÞ with
the phenomenological Vogel-Fulcher-Tammann (VFT)
equation [24–26],

! ¼ !0 exp
!

DTVF

T " TVF

"
: (2)

Here !0 is an inverse attempt frequency, D is the so-called
strength parameter, and TVF is the Vogel-Fulcher tempera-
ture. The obtained fit curve (!0 ¼ 3:8' 10"13 s, D ¼ 8:0,
and TVF ¼ 177 K) provides a good description of the
relaxation-time data and, moreover, a reasonable match
of the dc resistivity data is achieved. Thus, these results
indicate that the ionic charge transport in PEO-LiTFSI is
indeed strongly coupled to the " process (which in poly-
mers corresponds to the segmental motion), as also often
found for electrolyte solutions and dipolar glass-forming
liquids [27] and as also predicted by the Debye-Stokes-
Einstein relation. This can be easily rationalized if regard-
ing the ionic charge transport as the motion of spheres
through a viscous medium and if having in mind that it is
the" relaxation that determines the viscosity. However, the
rigidity of the polymer chain also has to be accounted for as

it was recently shown for a series of PEO-related polymer
electrolytes [28]. Figure 2 also shows the relaxation time
!R from the present NSE measurements at the lowest
and highest of q values, measured at two temperatures
(squares). They are several decades larger than those of
the segmental " relaxation, fully consistent with their
interpretation as normal modes. Comparison of the
obtained normal-mode time scales with those associated
with the ionic charge transport at corresponding length
scales of NSE indicates that this relaxational process is
also correlated with the ionic charge transport in PEO at
macroscopic length scales [19]. The dielectric data also
revealed the presence of a secondary# process that follows
an Arrhenius law with activation energy of 0.29 eV (Fig. 2,
open circles and dashed line). In Ref. [23], the # relaxation
in PEO:LiTFSI was proposed to arise from the local reor-
ientation of the C-O bond dipoles in the polymer chain.
However, it should be noted that secondary relaxations
in polymers are also often identified with the so-called
Johari-Goldstein relaxation [29], which was shown to arise

FIG. 2 (color). Arrhenius diagram showing the relaxation time
map (left scale) and the dc resistivity (right scale). The relaxation
time constants fromNSE (squares) are shown for the lowest (upper
data point) and highest values of q (lower point). The " (closed
circles) and # relaxation times (open circles) were determined
from fits of the dielectric spectra [19]. The solid line shows a fit of
the " relaxation time with the VFT equation. The dashed line is a
fit of !#ðTÞ with an Arrhenius law revealing an energy barrier of
0.29 eV. The dc resistivity curve is vertically shifted tomatch the"
relaxation times, demonstrating a perfect agreement of the tem-
perature dependences of both quantities (note the same decades/
cmscaling of both ordinates). The stars denote the relaxation times
reported in thework byMao et al. [10] for anEO=Li ratio of 7:5=1
(we show an approximate q-averaged value, read off from the
dashed lines in Fig. 3 of Ref. [10]).

PRL 111, 018301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
5 JULY 2013

018301-3
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•  α-relaxation (main chain 
motion) and DC 
conductivity have 
identical temperature 
dependence (VFT). 

•  Implication is that the  
α-relaxation plays an 
important role in long 
range Li+ transport. 

VFT 

Arrhenius 
28 kJ/mol 
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•  Hopping of 8Li+ appears to 
be an Arrhenius process. 

•  Diffusion parameters 
depend strongly on the 
ionicity of the lithium salt. 



through the z dependence of R. It is only when we restrict the
thermal expansion to have one of two discrete values, αm or αg,
that a layer model naturally results. The temperature-dependent
thermal expansivity of the entire film is then given as

α α α= * + − *z h z h[ ( )]/m g (3)

For a dilatometric measurement of Tg, the temperature is varied
and typically the transition is taken as the midpoint where α =
(αg + αm)/2. Thus, at the measured dilatometric glass
transition, the system satisfies the condition that z*(T) = h/
2. Note that replacing the word expansivity by heat capacity
would allow the same argument to be made for calorimetric
measurements carried out at the same cooling rate as typical
dilatometric studies.
At the thin film glass transition Tg(h), and making use of eq

2,

ξ =
−

−
−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟h

T
f

T T h
R T h2 ( )

(bulk) ( )

( )
1 g g

s g (4)

which simplifies to

ξ
= +

−
− ⎡⎣ ⎤⎦

T h R
T R

f h T h
( )

(bulk)

1 /2 ( ( ))
g s

g s

g (5)

We note that this expression is still completely general, and in
order to calculate Tg(h), we need to specify the function f that
describes the spatial extent of the enhanced surface dynamics.
We consider the simple example where f decreases exponen-
tially as z increases, f(z/ξ(T)) = exp(−z/ξ(T)). We stress that
the qualitative results obtained here do not depend on this
choice of functional form. Using eq 5, if we include the
simplifying assumption that ξ(T) = ξ0 (i.e., temperature-
independent), we can now write an explicit expression for
Tg(h)

ξ
−

− = −
T h T

R T h
( ) (bulk)

(bulk)
1

1 exp( /2 )
g g

s g 0 (6)

Figure 2 is a plot of the functional form of eq 6 and shows
that if the rheological temperature of the free surface is higher
than that of the bulk (i.e., Rs − Tg(bulk) > 0), then the
measured glass transition of a thin supported film decreases
with decreasing film thickness, consistent with the vast majority
of experiments. Figure 2 is notable in that it describes an
apparent reduction in the dilatometric Tg value at a particular h
value even though only a layer with vanishingly small thickness
would actually have it’s dynamics described by that Tg value.
This idea is consistent with the layer-by-layer Tg studies of ref
12, though we have not calculated layer-by-layer Tg values for
direct comparisons with those measurements. In other words,
the measured Tg value is essentially uncoupled from the film
dynamics. At Tg, a bulk sample would be near equilibrium in its
entirety on the time scale of the experiment, but in our model
at Tg for a thin film, only half of the film is in equilibrium, while
the remainder is in the glassy state. This demonstrates that the
same dilatometric measure leads to different dynamical
scenarios in thin films and bulk materials.
Figure 3 shows data that represents a large body of the

thickness-dependent Tg values in the literature for supported
polystyrene films.1,3 This data shows a great deal of scatter, and
it is not clear that fitting to data with such large scatter is the
best approach. As an alternative, we fit to a subset of Tg data

where the annealing conditions and atmosphere have been
carefully controlled and documented.23 These data are shown
as the solid squares in Figure 3. Also shown as lines in this
figure are calculations based on eq 6 for two cases of ξ(T). In
the first case (solid line), we use a constant value of ξ0 and Rs
and fit the equation to the data to obtain Rs = 435 K and ξ0 =
3.6 nm. We can see from Figure 3 that this very simple
approach provides an excellent description of not only the data
from ref 23, but the entire body of literature data shown.
Despite this agreement, we need to examine other

possibilities. In particular, we have assumed that Rs is
independent of temperature. This means that the relaxation
time of segments at the free surface is independent of
temperature. This is rather unphysical, as there must be some
slowing down with decreasing temperature. To obtain a more
physically reasonable temperature-dependent expression for Rs
requires an expression for the temperature-dependent
relaxation time in bulk materials near the bulk Tg value. Since
there are studies that suggest a high surface mobility in the
temperature range of interest,16,22 a reasonable approach would
be to use the bulk Vogel−Fulcher−Tamman (VFT) expression
for the relaxation times near the bulk Tg to get a temperature-
dependent rheological surface temperature. The VFT equation
is given by τ ∼ exp[B/(T − T0)], with B the activation
temperature and T0 the Vogel temperature. In the simplest case
that the surface relaxation can be described as a simple activated
process14,15 τ ∼ exp(Es/T), where Es is an activation barrier

Figure 2. Normalized change in the glass transition as a function of the
normalized film thickness as given by eq 6.

Figure 3. Tg(h) using the model described in the text with both
constant (solid line) and variable (dashed line) values for Rs and ξ.
Best fit parameters are given in the text.

ACS Macro Letters Letter

dx.doi.org/10.1021/mz4006217 | ACS Macro Lett. 2014, 3, 310−314312
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•  Reduction of Tg for thin, 
supported PS films 

•  Results suggest region 
near the surface with 
enhanced dynamics 

J.A. Forrest and K. Dalnoki-Veress 
Adv. Colloid Interface Sci. 2001, 94, 167 
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Neutron reflectometry 
on 100 nm thick 

multilayer film 

R. Inoue et al. 
Phys. Rev. E 2011, 83, 021801 
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•  Spin relaxation due to 
torsional motion of phenyl 
rings. 

•  Enhanced dynamics and 
lower torsional barrier within 
~10 nm of free surface. 
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